Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation

نویسندگان

  • BY YEHUA LI
  • YEHUA LI
چکیده

For longitudinal data, when the within-subject covariance is misspecified, the semiparametric regression estimator may be inefficient. We propose a method that combines the efficient semiparametric estimator with nonparametric covariance estimation, and is robust against misspecification of covariance models. We show that kernel covariance estimation provides uniformly consistent estimators for the within-subject covariance matrices, and the semiparametric profile estimator with substituted nonparametric covariance is still semiparametrically efficient. The finite sample performance of the proposed estimator is illustrated by simulation. In an application to CD4 count data from an AIDS clinical trial, we extend the proposed method to a functional analysis of the covariance model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data

Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. Existing approaches usually focus on modeling the mean with specification of certain covariance structures, which may lead to inefficient or biased estimators of parameters in the mean if misspecification occurs. In this article, we propose a data-drive...

متن کامل

Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.

Improving efficiency for regression coefficients and predicting trajectories of individuals are two important aspects in analysis of longitudinal data. Both involve estimation of the covariance function. Yet, challenges arise in estimating the covariance function of longitudinal data collected at irregular time points. A class of semiparametric models for the covariance function is proposed by ...

متن کامل

A General Asymptotic Theory for Maximum Likelihood Estimation in Semiparametric Regression Models with Censored Data.

We establish a general asymptotic theory for nonparametric maximum likelihood estimation in semiparametric regression models with right censored data. We identify a set of regularity conditions under which the nonparametric maximum likelihood estimators are consistent, asymptotically normal, and asymptotically efficient with a covariance matrix that can be consistently estimated by the inverse ...

متن کامل

Efficient Estimation in Partially Linear Single-Index Models for Longitudinal Data

In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single-index models for longitudinal data which may be unbalanced. In particular, a new three-stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resul...

متن کامل

Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011